MEDEAS-World Model Calibration for the Study of the Energy Transition


  • Gianluca Martelloni INSTM* c/o Department of Chemistry, University of Florence (Italy)
  • Ilaria Perissi INSTM c/o Department of Chemistry, University of Florence (Italy)
  • Sara Falsini INSTM c/o Department of Chemistry, University of Florence (Italy)
  • Francesca Di Patti Consiglio Nazionale delle Ricerche, Institute for Complex Systems
  • Ugo Bardi INSTM c/o Department of Chemistry, University of Florence (Italy)



Global warming, Transition energy, Emission scenarios, System dynamics, Model calibration, Sensitivity analysis


MEDEAS (Modelling the Energy Development under Environmental And Socioeconomic constraint) World is a new global-aggregated energy-economy-environmental model, which runs from 1995 to 2050. In this work, the MEDEAS world model is tested in order to reproduce the IPCC (International Panel on Climate Change) GHG (Green House Gases) emission pathways consistent with 2 °C Global Warming. A parameter optimisation of the MEDEAS model, related to different scenarios until 2050, is achieved. Moreover, a sensitivity analysis on the parameters that directly influence the emission curves focusing on the annual growth of the RES (Renewable Energy Sources), GDP (Gross Domestic Product) and annual population growth, is provided. From such an analysis, it has been possible to infer the large impact of GDP on the emission scenarios.


Capellán-Pérez, I., de Castro, C., and Arto, I. (2017a), “Assessing Vulnerabilities and Limits in the Transition to Renewable Energies: Land Requirements under 100% Solar Energy Scenarios”, Renewable and Sustainable Energy Reviews, 77: 760–782.

Capellán-Pérez, I., de Blas, I., Nieto, J., de Castro, C., Miguel, L.J., Mediavilla, M., Carpintero, Ó., Rodrigo, P., Frechoso, F., and Cáceres, S. (2017b), Modelling Sustainable Energy System Development under Environmental and Socioeconomic Constraints. MEDEAS Scenarios D4.1. Available online at https:/ (last accessed: April 15, 2019).

Capellán-Pérez, I., de Blas, I., Nieto, J., de Castro, C., Miguel, L.J., Carpintero, Ó., Mediavilla, M., Lobejón, L.F., Ferreras-Alonso, N., Rodrigo, P., Frechoso, F.A.F., and Álvarez-Antelo, D. (2019a), “MEDEAS: A New Modelling Framework Integrating Global Biophysical and Socioeconomic Constraints”, Manuscr. Submitt. Publ.

Capellán-Pérez, I., Blas De, I., Nieto, J., de Castro, C., Carpintero, Ó., Miguel, L.J., and Mediavilla, M. (2019b), “MEDEAS: A New Modelling Framework Integrating Biophysical and Socioeconomic Constraints”, Global Environmental Change.

Cardoso, M.F. (1996), “The Simplex-Simulated Annealing Approach to Continuous Non-Linear Optimization”, Computers & Chemical Engineering, 20 (9): 1065–1080.

Diaz, D., and Moore, F. (2017), “Quantifying the Economic Risks of Climate Change”, Nature Climate Change, 7 (11): 774–782.

Dietz, S., and Stern, N. (2015), “Endogenous Growth, Convexity of Damage and Climate Risk: How Nordhaus’ Framework Supports Deep Cuts in Carbon Emissions”, The Economic Journal, 125 (583): 574–620.

Dorfman, R. (1969), “An Economic Interpretation of Optimal Control Theory”, American Economic Review, 59 (5): 817–831.

Marsili-Libelli, S. (1992), “Parameter Estimation of Ecologicals Models”, Ecological Modelling, 62 (4): 233–258.

Martelloni, G., Segoni, S., Lagomarsino, D., Fanti, R., and Catani, F. (2013), “Snow Accumulation/Melting Model (SAMM) for Integrated Use in Regional Scale Landslide Early Warning Systems”, Hydrology and Earth System Sciences, 17 (3): 1229–1240.

Meinshausen, M., Raper, S.C.B., and Wigley, T.M.L. (2011), “Emulating Coupled Atmosphere-Ocean and Carbon Cycle Models with a Simpler Model, MAGICC6 – Part 1: Model Description and Calibration”, Atmospheric Chemistry and Physics, 11: 1417–1456. DOI: 10.5194/acp-11-1417-2011.

Nelder, J.A., and Mead, R. (1965), “A Simplex Method for Function Minimization”, The Computer Journal, 7 (4): 308–313. DOI: 10.1093/comjnl/7.4.308.

Perissi, I., Falsini, S., Bardi, U., Natalini, D., Green, M., Jones, A., and Solé, J. (2018), “Potential European Emissions Trajectories within the Global Carbon Budget”, Sustainability, 10 (11): 1–13.

Pfenninger, S., DeCarolis, J., Hirth, L., Quoilin, S., and Staffell, I. (2017), “The Importance of Open Data and Software: Is Energy Research Lagging Behind?”, Energy Policy, 101: 211–215. DOI: 10.1016/j.enpol.2016.11.046.

Ringkjøb, H.K., Haugan, P.M., and Solbrekke, I.M. (2018), “A Review of Modelling Tools for Energy and Electricity Systems with Large Shares of Variable Renewables”, Renewable and Sustainable Energy Reviews, 96: 440–459. DOI: 10.1016/j.rser.2018.08.002.

Rotmans, J., and van Asselt, M.B. (2001), “Uncertainty in Integrated Assessment Modelling: A Labyrinthic Path”, Integrated Assessment, 2 (2): 43–55. DOI: 10.1023/A:1011588816469.

Santarlasci, A., Martelloni, G., Frizzi, F., Santini, G., and Bagnoli, F. (2014), “Modeling Warfare in Social Animals: A ‘Chemical’ Approach”, PloS One, 9 (11): 1–12.

Scrieciu, S., Rezai, A., and Mechler, R. (2013), “On the Economic Foundations of Green Growth Discourses: The Case of Climate Change Mitigation and Macroeconomic Dynamics in Economic Modeling”, Wiley Interdisciplinary Reviews: Energy and Environment, 2 (3): 251–268. DOI: 10.1002/wene.57.

Solé, J., García-Olivares, A., Turiel, A., and Ballabrera-Poy, J. (2018), “Renewable Transitions and the Net Energy from Oil Liquids: A Scenarios Study”, Renewable Energy, 116: 258–271.

Wigley, T., and Raper, S. (1992), “Implications for Climate and Sea Level of Revised IPCC Emissions Scenarios”, Nature, 357: 293–300. DOI: 10.1038/357293a0.

Solé, J., Samsó, R., García-Ladona, E., García-Olivares, A., Ballabrera, J., Madurell, T., Turiel, A., Osychenko, O., Álvarez, D., Bardi, U., Baumann, M., Buchmann, K., Capellán-Pérez, Í., Cerny, M., Carpintero, Ó., de Blas, I., de Castro, C., de Lathouwer, J.-D., Duce, C., Eggler, L., Enríquez, J.M., Falsini, S., Feng, K., Ferreras, N., Frechoso, F., Hubacek, K., Jones, A., Kaclíková, R., Kershner, C., Kimmich, C., Lobejón, L.F., Lomas, P.L., Martelloni, G., Mediavilla, M., Miguel, L.J., Natalini, D., Nieto, J., Nikolaev, A., Parrado, G., Papagianni, S., Perissi, I., Ploiner, C., Radulov, L., Rodrigo, P., Sun, L., and Theofilidi, M. (2019), “Modelling the Renewable Transition: Scenarios and Pathways for a Decarbonised Future Using Pymedeas, a New Open-Source Energy Systems Model”, Manuscr. Submitt. Publ.




How to Cite

Martelloni, G., Perissi, I., Falsini, S., Di Patti, F., & Bardi, U. (2020). MEDEAS-World Model Calibration for the Study of the Energy Transition. PuntOorg International Journal, 4(2), 119–140.